Liouvillian Rst Integrals of Homogeneous Polynomial 3-dimensional Vector Elds

نویسنده

  • Jean Moulin Ollagnier
چکیده

Given a 3-dimensional vector eld V with coordinates V x , V y and V z that are homogeneous polynomials in the ring kx; y; z], we give a necessary and suucient condition for the existence of a Liouvillian rst integral of V , which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in ring kx; y; z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaa and orthogonal to the vector eld V. Thus, our theorem links the existence of an object that belongs to some level of an extension tower with the existence of objects deened by means of the base diierential ring kx; y; z]. A self-contained proof of this result is given in the vocabulary of diierential algebra. This method of nding rst integrals in a given class of functions is an extension of the compatibility method introduced by J.-M. Strelcyn and S. Wojciechowski; and an old method of Darboux is a special case of it. We discuss all these relations and argue for the practical interest of our characterization despite an old open algorithmic problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms and Methods in Differential Algebra

Founded by J. F. Ritt, Differential Algebra is a true part of Algebra so that constructive and algorithmic problems and methods appear in this field. In this talk, I do not intend to give an exhaustive survey of algorithmic aspects of Differential Algebra but I only propose some examples to give an insight of the state of knowledge in this domain. Some problems are known to have an effective so...

متن کامل

Symbolic Computations of First Integrals for Polynomial Vector Fields

In this article we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing , if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic comp...

متن کامل

Liouvillian First Integrals for Generalized Liénard Polynomial Differential Systems

We study the Liouvillian first integrals for the generalized Liénard polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where g(x) and f(x) are arbitrary polynomials such that 2 ≤ deg g ≤ deg f .

متن کامل

Liouvillian First Integrals of Second Order Polynomial Differential Equations

We consider polynomial differential systems in the plane with Liouvillian first integrals. It is shown that all such systems have Darbouxian integrating factors, and that the search for such integrals can be reduced to a search for the invariant algebraic curves of the system and their ‘degenerate’ counterparts.

متن کامل

On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems

We consider generalized Liénard polynomial differential systems of the form ˙ x = y, ˙ y = −g(x) − f (x) y, with f (x) and g(x) two polynomials satisfying deg(g) ≤ deg(f). In their work, Llibre and Valls have shown that, except in some particular cases, such systems have no Liouvillian first integral. In this letter, we give a direct and shorter proof of this result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995